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1 Tietze’s Extension Theorem and Compactness

1.1 Tietze’s extension theorem

Let X be a normal topological space.

Theorem 1.1 (Tietze’s extension theorem). Let (X, T ) be T4, let A ⊆ X be closed, and
let f ∈ C(A, [a, b]). Then there exists F ∈ C(X, [a, b]) such that F |A = f . The same holds
if C(X, [a, b]) is replaced with C(X,K), where K = R or C.

Proof. Without loss of generality, translate so that a = 0. We claim that if f ∈ C(A, [0, b]),
then there exists g ∈ C(X, [0, b/3]) such that 0 ≤ f − g ≤ 2b/3. Let B = {x ∈ A : f(x) ≤
b/3}, and let C = {x ∈ A : f(x) ≥ 2b/3}. These are relatively closed in A, and since A
is closed, they are closed in X. By Urysohn’s lemma, there exists g ∈ C(X, [0, b/3]) such
that g|B = 0 and g|C = b/3. Now check that

1. g|A ≤ f ,

2. f ≤ g|A + 2b/3.

Let g1 be given by the claim, and let f1 = f − g1|A. Apply the claim again. There
exists g2 ∈ C(X, [0, 2/3 · b/3]) such that 0 ≤ f1 − g2|A ≤ (2/3)2b. By recursion, we find
gn ∈ C(X, [0, (2/3)n−1 · b/3]), and f − (

∑n
i=1 gi)|A ≤ (2/3)nb. Now, for any m ≥ n ≥ n,∥∥∥∥∥

m∑
i=1

gi −
m∑
i=1

gi

∥∥∥∥∥
u

=

∥∥∥∥∥
m∑

i=n+1

gi

∥∥∥∥∥
u

≤
m∑

n+1

‖gi‖u ≤
m∑

i=n+1

(2/3)i−1
b

3
≤ C(2/3)nb.

So F :=
∑∞

i=1 gi ∈ C(X, [0, b]), and if x ∈ A,

|f(x)− F (x)| = lim
n→∞

|f(x)−
n∑

i=1

gi(x)| = 0.

Now suppose f ∈ C(X,R). Consider f ′ = f/(1 + |f |) ∈ C(X, (−1, 1)). This has an
extension F ′ ∈ C(X, [−1, 1]). Let H = {x : F ′(x) = ±1}. This is closed and disjoint from
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A. So by Urysohn’s lemma, there exists h ∈ C(X, [0, 1]) such that h|A = 1 and h|H = 0.
Let G = F ′ ·h. Now G ∈ C(X, (−1, 1)), and G|A = f ′. Now define F := G/(1−|G|). Then
F ∈ C(X,R) such that F |A = f .

For X = C, split into the real and imaginary parts of f .

1.2 Compact spaces

Definition 1.1. A topological space X is compact if every open cover has a finite sub-
cover. The same is true for a subset of X. A subset A ⊆ X is precompact if A is
compact.

Remark 1.1. The characterization of compactness in metric spaces using sequences turns
out to be not as useful in analysis, even though it can be defined in point set topology in
general.

Definition 1.2. We say a family F ⊆ P(X) has the finite intersection property
(FIP) if F1 ∩ · · · ∩ Fm 6= ∅ whenever m ∈ N and F1, . . . , Fm ∈ F .

Lemma 1.1. A topological space X his compact if and only if every FIP family of closed
sets F has

⋂
F 6= ∅.

Proof. ( =⇒ ): Let F be an FIP family of closed sets. Let U = {X \ F : F ∈ F}. For any
X \F1, . . . , X \Fm ∈ U , we know that there exists x ∈ F1 ∩ · · · ∩Fm, so x /∈

⋃m
i=1(X \Fi).

So by compactness
⋃
U 6= X. So

⋂
F 6= ∅.

(⇐= ): The reverse implication is just the same steps, but in reverse order.

Proposition 1.1. If X is compact and A ⊆ X is closed, then A is compact.

Proof. Suppose U is a family of open sets in X such that A ⊆
⋃
U . Define V = U∪{X \A}.

This is an open cover of X, so it has a finite subcover U1 . . . , Um ∈ U such that X =
(X \A) ∪

⋃m
1=1 Ui. So U1, . . . , Um form a finite subcover of A.

1.3 Compact Hausdorff spaces

Some topologies, like the trivial topology, give us undesirable compact spaces. We add the
condition of Hausdorff to get spaces we do want.

Proposition 1.2. Let X be Hausdorff, let F ⊆ X be compact, and let x ∈ X \ F . Then
there exist disjoint neighborhoods U 3 x and V ⊆ F .

Proof. For all y inF , we have y 6= x, so there exist disjoint open sets Uy 3 x and Vy 3 y.
Now F ⊆

⋃
y Vy, so there exist y1, . . . , ym ∈ F such that F ⊆ Vy1 ∪ · · ·Vym . Now F ⊆ V :

Vy1 ∪ · · ·Vym is disjoint from U := Uy1 ∩ · · · ∩ Uym . U is an open neighborhood of x.

Proposition 1.3. A compact subset of a Hausdorff space is closed.
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Proof. If F is a compact subset of X, then every x ∈ X setminusF admits an open U 3 x
such that F ∩ U = ∅. So X \ F =

⋃
ux, so F is closed.

Proposition 1.4. A compact Hausdorff space is normal.

Proof. Let A,B ⊆ X be disjoint and closed. A and B are compact. So for all x ∈ A, there
exist disjoint neighborhoods Ux 3 x and Vx ⊇ B. Now {Ux : x ∈ A} is an open cover. so
there exist Ux1 ∪ · · · ,∪Uxn ⊇ A disjoint from Vx1 ∩ · · · ∩ Vxn ⊇ B.

1.4 Continuous functions on compact spaces

Proposition 1.5. If X is compact and f : X → Y is continuous, then f(X) is compact.

Proof. Let U be an open cover of f(X). Then f−1[U ] = {f−1(U) : U ∈ U} is an open
cover of X. By compactness, there exists a finite subcover f−1[U1], . . . , f

−1[Um]. Then
U1 ∪ · · · ∪ Um ⊇ f(X) is an open cover.

Corollary 1.1. If Y = R, then extreme values are obtained. So C(X) = BC(X).

Proposition 1.6. Let X be compact, Y be Hausdorff, and let f : X → Y be a continuous
bijection. Then f is a homeomorphism; i.e. f−1 is also continuous.

Proof. Let C ⊆ X be closed. Then C is compact, so f(C) is compact. Then f(C) is closed,
as Y is Hausdorff. So f sends closed sets to closed sets; i.e. f−1 is continuous.
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